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Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, 00-681 Warszawa, Hoża 69, Poland
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Abstract
We investigate thermodynamic and geometrical conditions for the formation
of a liquid bridge between a planar and conical walls modeling atomic force
microscope (AFM). Our macroscopic analysis is based on the grand canonical
functional of the shape of the liquid–vapor interface which contains the relevant
bulk, surface and line free energies. The phase diagram of such a confined
fluid displays the existence of two phases: one with a liquid bridge connecting
the walls, and the other without a bridge. The structure of the corresponding
coexistence line is determined and its dependence on the value of the line
tension coefficient is discussed.

1. Introduction

The behavior of fluids confined in nanosized structures depends sensitively on the properties of
the enclosing walls [1, 2]. The equilibrium paradigm of such an influence is provided by the
capillary condensation phenomenon in a slit. Despite thermodynamic conditions favoring the
gas phase in the bulk, the liquid phase may fill the space between the slit walls [3–7]. The shift
of the gas–liquid coexistence line μ = μh(T ) in the slit of width h with respect to its position
in the bulk system μ = μ0(T ) is described by the Kelvin law: μ0(T ) − μh(T ) ∝ 1/h [8].

When the walls confining the fluid are non-planar and resemble the AFM geometry
then one may expect the formation of a liquid bridge linking the opposite walls [9–15] at
thermodynamic conditions that favor the gas phase in the bulk. The size and the shape of the
liquid bridge depend on the system’s geometry as well as on the thermodynamic state specified
by the chemical potential μ and temperature T ; the range in which these parameters can vary
is one of the objects of our analysis. The presence of a liquid bridge induces an additional
force—with respect to the situation without a bridge—acting between the walls; this force must
be taken into account when analyzing the atomic force microscope measurements [16–20]. The
formation of the liquid bridge is also exploited in dip-pen nanolithography [21–24]. There the
existence of the bridge enables the flow of a particular type of molecule from the tip of the AFM
onto the planar substrate. The size of the patterns that are produced depends on the geometry
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Figure 1. A liquid-like bridge (l) surrounded by the gas phase (g) connects the planar substrate (1)
and the AFM tip of the conical shape (2).

(This figure is in colour only in the electronic version)

of the bridge, which itself is controlled by the thermodynamic state of the system and its walls’
geometry. These two examples already show that the knowledge of precise thermodynamic and
geometrical conditions for the existence of liquid bridges together with their morphological
properties is of crucial importance.

In this paper we investigate the morphological phase transitions taking place in a three-
dimensional (3D) fluid confined by the walls resembling the AFM geometry. They consist of a
planar substrate and the surface of a cone modeling the cantilever’s tip. Our study is based on
a macroscopic approach in the grand canonical ensemble with the purpose of constructing the
relevant phase diagram and determining the possible shapes of the liquid-like bridge spanned
between the planar substrate and the conical tip. In particular, we discuss the influence of the
line tension on the structure of the coexistence curve and examine the special cases which turn
out to be related to the filling transition.

2. Shape of meniscus

We consider fluid confined between two inert substrates; see figure 1. The surface of the lower
substrate denoted by (1) is an infinite plane z = 0 and the upper substrate denoted by (2) forms
an infinite cone characterized by the opening angle π − 2ϕ. The distance between the cone’s
apex and the plane z = 0 is denoted by h; the parameters h and ϕ completely characterize
the system’s geometry which has cylindrical symmetry. In cylindrical coordinates the cone is
described by equation r = a(z) = (z − h) cot ϕ, where r = √

x2 + y2 and z > h. The
system under study resembles the AFM-like geometry in which the conical substrate (2) plays
the role of the microscope’s tip. In the limit ϕ = 0, h �= 0, the geometry becomes that of a slit
with two parallel walls separated by the distance h. In another limiting case corresponding to
ϕ �= 0 and h = 0, the confining walls can be obtained by rotating a two-dimensional wedge
with the opening angle ϕ around the axis perpendicular to one of the walls and intersecting the
wedge’s apex. The interesting point about such a confining geometry is that it might allow—
under appropriate thermodynamic conditions—for a filling transition [25, 26]. Thermodynamic
states of the fluid are specified by the temperature T and chemical potential μ, and are assumed
to be located away from the bulk liquid–gas critical point.

Our macroscopic analysis is based on the grand canonical functional �([ f ], T, μ, h, ϕ)

which is a functional of the interfacial shape f and is parametrized by the fluid thermodynamic
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state T, μ and geometric parameters h, ϕ. The functional � is constructed such that it contains
all the relevant bulk, surface and line contributions to the constrained grand canonical free
energy correspondingly to a given interfacial shape f [8]. The allowed shapes of the liquid–
gas interface are assumed to be cylindrically symmetric, i.e. r = f (z). The equilibrium shape
f̄ (z; T, μ, h, ϕ) minimizes the functional � and leads to the thermodynamic grand canonical
potential �̄(T, μ, h, ϕ) = �([ f̄ (z; T, μ, h, ϕ)], T, μ, h, ϕ). To shorten notation we shall
refrain from displaying the dependence of analyzed functions and functionals on parameters
T, μ, h, ϕ from now on. Comparison of the grand canonical potential values corresponding to
configurations with and without the bridge allows us to tell which configuration is favorable
under given thermodynamic and geometric conditions, and to construct the relevant phase
diagram. In what follows we shall work with the functional ��[ f ] representing the difference
between the grand potential corresponding to the state with a bridge and without it. For practical
reasons we change the parametrization, and instead of temperature T we switch to angles θi,
i = 1, 2, related to the temperature-dependent surface tension coefficients σig, σil, and σlg,
i = 1, 2 via the Young equation [8]

σig − σil = σlg cos θi, i = 1, 2. (1)

In the above equation, σlg denotes the liquid–gas surface tension while i stands for the i th
substrate and—for example—σ1l denotes the substrate 1–liquid surface tension. In what
follows, the above relation will be applied also to thermodynamic states slightly off the bulk
coexistence.

The present analysis—contrary to the two-dimensional version of the problem [27]—also
takes into account the linear contributions to the free energy which are related to the three
phase contact lines where gas, liquid and the i th substrate meet. The line tension coefficient
which measures the corresponding free energy per unit length of the three phase contact line is
denoted by τilg. In the present approach these coefficients are considered as given. However,
in a more refined version of the present analysis based on the effective capillary Hamiltonian
approach one could make an attempt to determine these coefficients by calculating the total free
energy of the inhomogeneous system and then extracting the relevant linear contributions. This
approach is left for future studies.

In the present macroscopic analysis the functional ��[ f ] has the following form:

��[ f ] = V (μ0 − μ)(ρl − ρg) + Algσlg + A1(σ1l − σ1g) + A2(σ2l − σ2g)

+ L1lgτ1lg + L2lgτ2lg (2)

where V denotes the liquid bridge’s volume, Alg, A1, A2 are the areas of the liquid–gas,
substrate 1–liquid, and substrate 2–liquid interfaces, L1lg, L2lg are the lengths of the three
phase contact lines, and �ρ = ρl − ρg > 0 is the liquid and gas number density difference.

After representing the volume of the liquid bridge, its surfaces, and the lengths of the three
phase contact lines by appropriate integrals, the grand canonical functional takes the following
form:

��[ f ]
2πσlg

=
∫

dz

⎡

⎣ f (z)

√

1 +
(

d f

dz

)2

+ f (z)2 − a(z)2
(z − h)

2λ

⎤

⎦

× 

(

f (z)
)



(

f (z) − a(z)
)

(z)

+
∫

dz

[
− cos θ1

f (z)2

2
δ(z) − cos θ2

sin ϕ
a(z) 
(z − h) 


(
f (z) − a(z)

)]

+
∫

dz [τ̃1lg f (z)δ(z) + τ̃2lg cot ϕ 
(z − h) 
( f − a)], (3)
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where λ = σlg/�μ�ρ, �μ = μ0 − μ � 0, and τ̃ilg = τilg/σlg. The parameters λ and τ̃ilg have
the dimension of length. The symbols 
(z) and δ(z) denote the Heaviside and Dirac functions,
respectively.

The equilibrium interfacial shape f̄ (z) minimizes ��[ f ] and fulfills the equation

1

f̄ (z)
√

1 + f̄ ′(z)2
− d

dz

f̄ ′(z)
√

1 + f̄ ′(z)2
= − 1

λ
(4)

supplemented by two boundary conditions,

0 =
[

cos θ1 + f̄ ′(z)
√

1 + f̄ ′(z)2
− τ̃1lg

f̄ (z)

]∣∣∣∣∣
z=0

0 =
[

cos θ2 − sin ϕ + cos ϕ f̄ ′(z)
√

1 + f̄ ′(z)2
− τ̃2lg

f̄ (z)
cos ϕ

]∣∣∣∣∣
z=z2

,

(5)

where the coordinate z2 is such that f̄ (z2) = a(z2). Both the equation for the interfacial
profile (4) and the boundary equations (5) follow from the minimization of ��[ f ]. The left-
hand side (lhs) of (4) is equal to the mean curvature of the interface [28] and thus the surface
of the bridge has constant and negative mean curvature; it is called a concave nodoid [29, 30].

Note that after introducing the contact angles γ1 and γ2 (see figure 2)

d f̄

dz

∣∣∣∣∣
z=0

= − 1

tan γ1
(6)

d f̄

dz

∣∣∣∣∣
z=z2

= 1

tan(γ2 + ϕ)
(7)

the boundary equations (5) take the form of modified Young equations [31]:

cos γ1 = cos θ1 − τ̃1lg

f̄ (0)
(8)

cos γ2 = cos θ2 − cos ϕ
τ̃2lg

f̄ (z2)
. (9)

In the case of vanishing line tension coefficients, i.e. τilg = 0, i = 1, 2, the contact angles
γi become equal to the angles θi present in the Young equation, (1). Unfortunately (4)
supplemented by the above boundary conditions, (5), cannot be solved analytically1. One
has to resort to numerical procedures for solving the second-order differential equation (4)
on a segment 0 � z � z2 for which boundary conditions (5) specified at both ends of the
segment must be fulfilled. In these circumstances we choose the shooting method [32] as
the most appropriate for such problems. For a given starting point z2 > h, one calculates
the quantities f̄ (z2) = a(z2) and f̄ ′(z2) in accordance with the boundary conditions, (9),

1 After the change of variables u( f̄ ) = d f̄
dz ( f̄ ), (4) takes the following form:

du2

d f̄
= 2

λ
(1 + u2)3/2 + 2

f̄
(1 + u2) (10)

and can be rewritten as
∫

d f̄ z( f̄ ) = ±
∫

f̄ 2 − 2C
√

(2λ f̄ )2 − ( f̄ 2 − 2C)2
d f̄ (11)

where C is the integration constant. The elliptical integral on the right-hand side (rhs) cannot be calculated analytically.
The function f̄ (z) cannot be presented in algebraic form as for the two-dimensional problem [27].
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Figure 2. The cross section of the system with the liquid bridge present (upper diagram) and the
shapes (of the right-hand halves) of the liquid bridges (lower diagram) (dashed lines) for a specific
choice of parameters ϕ = π/6, θ1 = θ2 = π/6, τ̃1lg = τ̃2lg = 0, and (a) λ = 10h, (b) λ = 50h, (c)
λ = 100h. The variables r and z are displayed in h units. For comparison we show the shapes of
liquid bridges obtained in the two-dimensional case (solid lines) for the same choice of the above
parameters.

and then the function f̄ (z) is constructed on the segment [0, z2] by solving (4). Once the
point z = 0 is reached, the boundary condition in (8) is checked. If it is fulfilled, then the
constructed function is accepted as f̄ (z) (see figure 2). If it is not, then the whole procedure
must be repeated for a new choice of the starting point z2; in the case when the angle γ1

calculated from (6) is larger than that obtained from (8) one increases z2, while in the opposite
case one starts with a decreased value of z2. The existence of the solution of (4) depends on
the choice of the thermodynamic state and the values of the geometric parameters. If there
is no solution f̄ (z) to (4) then the stable phase of our system corresponds to the absence
of a liquid bridge. Figure 2 shows interfacial shapes (broken lines) in the case of identical
substrates, fixed distance h, zero line tension coefficients, and three different choices of angle
ϕ; for comparison, the corresponding shapes obtained in the two-dimensional case [27] for
the same choice of geometric and thermodynamic parameters are plotted (solid lines). This
comparison makes sense when τ̃1lg = τ̃2lg = 0 which is the case. We note that—for the
given choice of thermodynamic parameters—the two-dimensional bridges are broader than the
three-dimensional ones.

3. Phase diagrams

Once the equilibrium shape f̄ (z) of the liquid bridge is determined, one can evaluate the
corresponding grand canonical free energy ��[ f̄ ] relative to a configuration without the
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Figure 3. The schematic phase diagrams in variables μ − μ0(T ) (measured in σlg/h�ρ units)
and π/2 − θ displaying the coexistence lines of phases in which the liquid bridge is present (B)
and absent (NB) for the case of identical substrates (θ1 = θ2 = θ ) and vanishing line tension
coefficients (τ̃1lg = τ̃2lg = 0). The upper diagram corresponds to ϕ = π/6; the lower diagram
displays the coexistence lines in a three-dimensional system (dotted lines) and—for comparison—
in two-dimensional systems (solid lines) for different values of the angle ϕ: (a) ϕ = 0, (b) ϕ = π/6,
(c) ϕ = π/4.

bridge. Depending on the sign of ��[ f̄ ], three cases are possible: (a) ��[ f̄ ] < 0—
the bridge phase is favorable; (b) ��[ f̄ ] > 0—the phase without the bridge is favorable;
(c) ��[ f̄ ] = 0—two previous phases coexist along a line in the (T, μ)-plane which will
be denoted as μ = μAFM(T ). The coexistence line μ = μAFM(T ) depends, in addition to
temperature T , also on the geometrical parameters h, ϕ.

Before presenting the results for the currently studied three-dimensional case, we recall
that a similar analysis performed for the two-dimensional case showed that both the Kelvin
law for capillary condensation in a slit of width h and the complete filling transition in
an infinite wedge (characterized by the opening angle ϕ) can be treated as special cases
of bridge formation [27]. In particular, the lowest temperature at which the bridge can be
formed (for a given angle ϕ) coincides with the wedge filling temperature Tf(ϕ) such that
θ(Tf(ϕ)) = π/2 − ϕ/2. The wedge filling temperature is an increasing function of ϕ [25, 26].
Note that the geometry of the two-dimensional system under present consideration constrains
the range of angle ϕ to [0, π/2]; if the filling transition were considered for wedges with
the opening angle ϕ from the range [0, π] (ϕ = π corresponding to a planar substrate) then
Tf(π) = Tw, where Tw denotes the wetting temperature. Upon crossing the coexistence curve
at a fixed value of angle θ towards larger values of the chemical potential μ, the system exhibits
discontinuous phase transition at which a bridge with a circular liquid–gas interface is formed.
The width of the bridge is inversely proportional to �μ and additionally depends on the opening
angle ϕ and height h. It becomes infinite for parallel walls, i.e. for ϕ = 0. The dependence of
the phase diagram on the parameters h and �μ enters via the product h�μ.

The phase diagrams obtained for the three-dimensional system in the case of vanishing
line tensions, i.e. for τ̃1lg = τ̃2lg = 0, do not differ qualitatively from those in two dimensions;

6
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Figure 4. The value of angle π/2 − θ∗ at which the filling transition takes place as a function of
angle ϕ. The dashed line represents the results of numerical analysis described in the text for the
case τ̃1lg = τ̃2lg = 0, h = 0; the solid line is obtained under the assumption that the liquid bridge’s
surface is described by a catenoid.

see figure 3. Both for two and three dimensions the coexistence line μAFM is a decreasing
function of the angle π/2−θ . Obviously, the coexistence lines in two and three dimensions are
identical in the special case of a slit of width h corresponding to the limit ϕ = 0. Similarly, as
in two dimensions, the filling transition temperature Tf(ϕ) plays a distinguished role; the AFM
coexistence lines meet the bulk coexistence tangentially at the value of the parameter π/2 − θ

corresponding to the filling temperature Tf(ϕ). In the present three-dimensional case the filling
transition takes place in the AFM geometry with h = 0. This particular value of parameter
π/2 − θ is denoted as π/2 − θ∗, where θ∗ = θ(Tf(ϕ)). At this point (π/2 − θ∗,�μ = 0) the
liquid bridge has zero mean curvature (see (4)) and therefore the ‘shape’ of a catenoid. Figure 4
presents the numerically obtained plot of π/2 − θ∗ as a function of angle ϕ. Note that for small
ϕ-values the angle π/2− θ∗ depends linearly on ϕ, i.e. θ∗ = π/2−ϕ. This last relation differs
from the two-dimensional case where one has θ∗ = π/2 − ϕ/2; see [25]. It is worthwhile
noting that the value θ∗ = 0 is reached for ϕ = ϕ0 < π/2, where ϕ0 = 1.42. Technically, ϕ0

presents the largest value of angle ϕ for which inscribing a catenoid (corresponding to angle
θ = θ∗) into AFM geometry is possible.

The above results were obtained within macroscopic analysis which does not take into
account the interaction between the liquid–gas interface and the substrates explicitly, as
specified for example by the interface potential ω( f ) [33, 34]. We note that the formulation
of this problem on the mesoscopic scale—in which the interface potential plays an important
role—meets from the very outset some basic questions related to the structure of the effective
Hamiltonian relevant for the present geometry in which the substrate’s curvature varies along
the AFM tip. One possible way of dealing with these problems is to start the analysis from the
microscopic level as specified, for example, by density functional theory [35–38].

4. The role of line tension

In order to determine the influence of line tension on the structure of a phase diagram, one
must know the line tension coefficient’s dependence on the thermodynamic state of the system
within the range of interest here, say for temperatures between the wetting temperature and the
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Figure 5. Numerically determined coexistence lines corresponding to different values of line
tension: (a) τ̃1lg = τ̃2lg = −2h, (b) τ̃1lg = τ̃2lg = −h, (c) τ̃1lg = τ̃2lg = 0, (d) τ̃1lg = τ̃2lg = h,
(e) τ̃1lg = τ̃2lg = 2h for specific choice of ϕ = π/6. The variable μ − μ0(T ) is measured in
σlg/h�ρ units. Solid lines are drawn to guide the eye.

temperature of capillary condensation. In spite of a rather vast literature on this subject [39–43]
there is still a lack of general statements applicable outside the immediate vicinity of the wetting
points where universal behavior is observed. We recall that the line tension coefficient τilg can
be of either sign and its value changes significantly in the vicinity of the wetting temperature
Twi, i.e. the temperature at which the angle θi vanishes, θi(Twi) = 0, [44–46]. The behavior
of the line tension coefficient near Twi depends on the order of the wetting transition and on
the type of interaction between particles constituting the system. The universal property of
this dependence is that the line tension coefficient is an increasing function for T ↗ Twi, and
the limiting value τilg(Twi) is positive for the first-order wetting (and can even be infinite for a
specific choice of interactions), and is zero for critical wetting [44].

In view of the lack of precise information on the dependence of line tension coefficients on
the chemical potential and temperature, we shall estimate their influence on the phase diagram
in the simplest model by assuming τilg to be constant parameters. We shall examine the system
properties corresponding to different constant values and, in particular, both signs will be taken
into account. For simplicity, in the following analysis we again consider identical substrates,
i.e. θ1 = θ2 = θ and τ̃1lg = τ̃2lg = τ̃ .

The line tension influences the grand canonical potential not only through its presence
in (3) but also via boundary conditions where it affects the contact angles, (8), (9). The
coexistence lines corresponding to different values of the line tension are shown on figure 5. For
positive τ -values the shape of the coexistence line does not change qualitatively with respect to
the τ = 0 case; it is still monotonic, i.e. μAFM is an increasing function of θ and achieves the
lowest value at the wetting temperature where θ(T = Tw) = 0.

On the other hand, for τ < 0 the coexistence lines are not monotonic; they exhibit a local
minimum and approach the bulk coexistence line μ = μ0 for T → Tw; see figure 5. One can
argue for this type of behavior at small θ values in the following way based on (8), (9): close
to the wetting temperature both f̄ (z2) and f̄ (0) must increase in order to prevent the rhs of (8),
(9) from exceeding 1. Thus the size of the bridge which is proportional to the (μ0 − μ)−1 also
increases, which means that μAFM approaches μ0.

The presence of line tension also influences the temperature at which the coexistence
lines approach (tangentially) the bulk coexistence. For positive line tensions this particular
temperature does not depend on the actual τ -value. For negative line tensions this temperature
decreases with |τ |. This behavior is illustrated in figures 6 and 7.

For two-dimensional systems [27] and for three-dimensional systems with τ = 0 there is
only one quantity with the dimension of length which can be built out of the system parameters,

8
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Figure 6. The value of parameter τ̃ = τ/σlg (measured in h units) as a function of angle
π/2 − θ at which the corresponding coexistence line on the phase diagram intersects the line
(a) λ = λ1 = 103h (solid line), (b) λ = λ2 = 104h (dashed line), (c) λ = λ3 = 105h (dotted
line). For λ = ∞ (μ = μ0) the resulting plot becomes vertical at π/2 − θ∗ for positive τ̃ (dashed–
dotted line). The opening angle is fixed at ϕ = π/6.

Figure 7. Plots of numerically calculated derivatives of the coexistence curve μ = μAFM(π/2 − θ)

with respect to its argument (denoted as μ′
AFM) for different values of line tension (τ̃1lg = τ̃2lg = τ̃ ):

(a) τ̃ = −2h, (b) τ̃ = −h, (c) τ̃ = 0, (d) τ̃ = h, (e) τ̃ = 2h for specific choice of ϕ = π/6 and
θ1 = θ2 = θ . Dashed lines are drawn to guide the eye.

namely λ = σlg/�μ�ρ. The equation for the coexistence line (��[ f̄ ] = 0) can be rewritten
as F0

(
θ, ϕ, λ

h

) = 0, where F0 is a dimensionless function. Thus the phase diagrams displayed
in variables π/2 − θ and μ − μ0(T ) measured in σlg/�ρh do not depend any more on height
h. If one considers a system with non-zero line tension then there is one additional parameter
with the dimension of length, namely τ̃ . This time the equation for the coexistence curve takes
the form Fτ

(
θ, ϕ, λ

h , τ̃
h

) = 0 and the coexistence lines corresponding to different h-values are
not identical unless τ̃ is properly rescaled; see figure 8.

5. Sizes of liquid bridges

The significant aspect of the present analysis is that it is applicable to macroscopic objects.
However, in figure 2 we see that the size of determined liquid bridges can vary substantially
depending on the chosen values of the system’s parameters. In this paragraph we analyze this
issue in more detail, in particular from the perspective of the requirement that analyzed objects
are macroscopic.

As the measure of the width w of the bridge we take the minimal value of f̄ (z) in the
range z = 0 to z2. For macroscopic bridges considered in this paper their width must be large
compared to the bulk correlation length ξ , which we take to be in the nanometer range. In
other words, a posteriori only parameter values should be taken into account such that the
corresponding bridges are macroscopic, i.e. w � ξ . The way that the width w depends on

9
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Figure 8. Numerically determined coexistence lines corresponding to a fixed value of line tension
τ̃ = 1 au and for different values of height h: (a) h = 1 au, (b) h = 2 au, (c) h = 3 a.u. In the case
of τ̃ = 0 the above coexistence lines corresponding to different h-values become identical; curve
(d). The opening angle is fixed and equal to ϕ = π/6. The difference μ − μ0(T ) is measured in
σlg/h�ρ units. Solid lines are drawn to guide the eye.

Figure 9. The bridge’s width w measured in ξ units (upper graph) evaluated along the
corresponding coexistence curves shown on the phase diagram (lower graph). The curves are
displayed for a range of θ values at which a macroscopic approach corresponding to w � 1 is
applicable—h-values: (a) h = 0.1ξ , (b) h = 0.3ξ , (c) h = 0.5ξ , (d) h = 0.7ξ , (e) h = 0.9ξ . The
angle ϕ = π/6 and τ = 0. The difference μ − μ0(T ) is measured in σlg/�ρξ units. Solid lines are
drawn to guide the eye.

parameters h, ϕ, and τ are depicted in figures 9–11. For angles θ � θ∗(ϕ) the width of the
bridge grows to infinity upon approaching the bulk coexistence independent of the sign of τ .
On the other hand, for θ > θ∗(ϕ) the width of the bridge achieves at bulk coexistence a finite
value for negative τ .

For small h-values and τ̃ ≈ 0.1ξ (for typical values of τ = 10−11 J m−1 and σlg =
10−2 J m−2, the coefficients τ̃ = τ/σlg are in the nanometer range) our macroscopic analysis
predicts for ϕ close to π/2 the existence of bridges with a width smaller than ξ . One has to
treat these results with caution because such a situation requires a more detailed approach than
the present macroscopic description; see [47] for similar arguments in the case of wedge filling
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Figure 10. The bridge’s width w measured in ξ units (upper graph) evaluated along the
corresponding coexistence curves shown on the phase diagram (lower graph). The curves are
displayed for a range of θ values at which macroscopic approach corresponding to w � 1 is
applicable: (a) ϕ = 0.5, (b) ϕ = 0.7 and (c) ϕ = 0.9. The height h = 0.25ξ and τ = 0.
The difference μ − μ0(T ) is measured in σlg/�ρξ units. Solid lines are drawn to guide the eye.

Figure 11. The bridge’s width w measured in ξ units (upper graph) evaluated along the
corresponding coexistence curves shown on the phase diagram (lower graph). The curves are
displayed for a range of θ values at which macroscopic approach corresponding to w � 1 is
applicable: (a) τ̃ = −0.2ξ , (b) τ̃ = −0.1ξ , (c) τ̃ = 0, (d) τ̃ = 0.1ξ , (e) τ̃ = 0.2ξ . The
height h = 0.1ξ and ϕ = π/6. The difference μ − μ0(T ) is measured in σlg/�ρξ units. Solid
lines are drawn to guide the eye.

transitions. We note that the minimal size of the bridge included in our analysis cannot be
smaller then the largest among the parameters h and |τ̃ | which have the dimension of length.
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This restriction reduces the range of parameters for which reliable phase diagrams can be
constructed within present approach.

6. Summary

We analyzed macroscopically the formation of liquid bridges in an AFM-like geometry in three
dimensions with the microscope tip modeled by a cone. In the case when the line tension is
not taken into account the properties of the phase diagram displaying the coexistence of two
phases—one with the liquid bridge present and the other without bridge—is similar to the phase
diagram obtained for the two-dimensional version of this problem. The coexistence line is an
increasing function of the contact angle θ , and it meets the bulk coexistence line tangentially
at the value of the contact angle θ∗(ϕ) corresponding to the filling transition. We provide a
numerically obtained plot of π/2− θ∗ versus ϕ which points—at least for small ϕ values—to a
linear dependence with prefactor 1. We also note that the particular value θ∗ = 0 corresponding
to wetting is obtained not for ϕ = π/2 but for smaller value ϕ = ϕ0 = 1.42.

In the presence of non-zero line tension values, in particular negative ones, the shape of
the coexistence line changes substantially. For negative values of line tension coefficients the
coexistence lines exhibit local minima and reapproach the bulk coexistence (μ = μ0) for small
values of angle θ corresponding to temperatures close to Tw. In addition, we analyzed the
size of the bridge present in the system and displayed its dependence on system parameters.
Our investigations are limited to macroscopic bridges and to situations in which line tensions
are treated as constants, i.e. do not depend on the thermodynamic state of the system. The
requirement that the characteristic lengths of this problem are larger than the bulk correlation
length reduces the range of parameters at which reliable conclusions can be drawn; this is
depicted on figures 9–11.

The main objects of our analysis in this paper were the phase diagrams for fluid confined
in AFM-like geometry with special emphasis on the structure of the coexistence curves along
which the phase with the liquid bridge spanning the walls and the phase without such a bridge
coexist. Unfortunately, there exist no experimental data which could be compared with our
predictions. Most of the experimental and simulational data on such systems refer to the
properties of the force between the AFM walls induced by the presence of the liquid bridge
and not to the structure of the phase diagram itself. We find that it is important to have an
overall view of the phase diagram before answering the more detailed questions referring to
such systems, like the dependence of this force on the distance between the tip apex and the
planar substrate, or the role of thermal fluctuations.

A more detailed analysis based on the effective capillary Hamiltonian [25, 26] might—
in principle—allow one not only to determine the expressions for the relevant line tension
coefficients (already mentioned in section 2) but also to help to estimate the role of fluctuations
on the formation and stability of liquid bridges investigated in this paper. We point to difficulties
related to the above mesoscopic formulation of the bridge formation problem.

Acknowledgments

The authors express their gratitude to S Dietrich, P Jakubczyk, and A Majhofer for many helpful
discussions. This work has been financed from funds provided for scientific research for years
2006–2008 under research project N202 076 31/0108.

References

[1] Eijkel J C T and van den Berg A 2005 Microfluid. Nanofluid. 1 249
[2] Squires T M and Quake S R 2005 Rev. Mod. Phys. 77 977

12

http://dx.doi.org/10.1007/s10404-004-0012-9
http://dx.doi.org/10.1103/RevModPhys.77.977


J. Phys.: Condens. Matter 19 (2007) 466104 F Dutka and M Napiórkowski
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